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1 Abstract

The coherent synchrotron radiation (CSR) instability is
studied in the case where it is caused by a single
synchronous component of the field excited by the
beam in a toroidal wave-guide. Parameters of a storage
ring can be chosen in a such a way that, due to the
shielding effect, one CSR mode determines beam
instability. Such a regime is different from the regime
studied before (SH,GS) where the continuous CSR
spectrum was implied. The beam dynamics for the
single-mode-instability regime has common features
with the FEL theory and may be advantageous for a
machine designed as a CSR source of radiation.
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2 Introduction

e CSR exists only for k = w/c > ko = =1/ R/a where

the long bunch spectrum is suppressed.

e The instability takes place within a range of the wave
lengths which depends on beam current and machine
parameters.

e Parameters may be chosen in such a way that only
few CSR modes close to the shielding threshold are
important.

e For such k, the wave guide modes are discrete, the
CSR impedance is a sum of J-functions, and the
previous analysis may be invalid.

e We analyze the CSR instability driven by a single
wave-guide mode. In this context, it is a very general
problem arising in plasma, FEL theory, and microwave
instability.

e Plan:

a) Summary on the toroidal wave-guide modes

b) Beam-EM interaction from scratch

c¢) Linear theory of the instability

d) Nonlinear stage of the instability
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e Geometry: toroidal chamber with square

cross-section and constant curvature R.

Here some results for the synchronous modes
(Stupakov+Kotelnikov):

e For the lowest synchronous mode

4.
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e For the next mode:
(w/c) = (8.78/m)kg, x = 3.01/a?.

e The higher order modes are numbered by the integers

p, m:

e For p > p., modes are suppressed, p., >~ (k—ko)2/ 3.
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3 Beam stability

e The w-component of the field excited by the beam is
given by the superposition of the eigen modes,

S (= I
Bu(9) = e [ SLerCulaw)

e For modulation ko; >> 1, bunch is treated as
coasting beam with n, = N/l neglecting transverse

emittance.

e The distribution function and beam current are
defined by the amplitudes g,

dwdq (...,
Fe0.0) = [ G g(w.q.0)



e Amplitudes C,, and g are related by
The Lorentz identity (Jackson, Vainstein)

/ 4S(E, x H, — E, x H,) = Z / V7,5,

and linearized Vlasov equation.

e That gives the set of coupled equations:

Culg,) = i (¢4(0)-

ecNiot
q — Q(na w) — 1€

/ dég(w_qca q, 5)7

0 ec
(w+1e00)g(w:0,0) = i B2 (15) (30 (0) (g, whac).

where the norm N,, is proportional to the power in the

mode.



In particular, the energy variation

do(z,t =
(d? ) = ;—zg.E(O,S = Ct_l_zvt)?

or
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Note:the delay time f depends on the group velocity.

That relates the loss factor and the amplitudes €,
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Exclude one of the amplitudes, we get

9(w,q,0) x= G(w, q)(0fo/09).

The EM amplitude G(w, q) # 0 only for w defined by
the d.eq.

1= Ando /d5 o
q— q(n,w + qc) + ie w + neqd’

n

where [ ddfo(d) =1, and

TeC Ny
>\n — 1 n)Xn
750/09 " ( /Bga )X
Note that
f(z,0,t) o ei(qz_“’t),
and EM wave

E Gei(qs—wt)
propagating in the beam pipe with the frequency

W = w + qc.



4 Dispersion relation for a single

mode

For a single EM mode with frequency @ = w + gc in the
laboratory frame, the dispersion equation takes the

form

dp (dpo(p)/dp)
o — qc+ (nedoq)p + i€

q—q(n,w) = An/

Let us assume that

W=w,+R, Q<<w,.

Then, q¢(n,©) = g, + Q2

Vg,m’
If Q >> (nw,do), the dispersion equation is reduced to

the cubic equation:

[Q — (q - Qn>vg,n][Q — (q — Qn>c]2 — _)\nvg,nnéOwn-

At the maximum,
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Numeric solution of the d.eq. is plotted in Fig. 1 in

dimensionless form using

() — (q_Qn>C qu C(q_Qn)(l_ﬁg,n).

I — ,

1 1

Figure 1: Dimensionless growth rate Im|z] vs. Ag, see
text.



Table 1: Growth rate in four machines

Parameter units LER,PEP-II | ALS | VUV NSLS | HER,PEP-II
linear bunch density ny, 1019 1/cm | 2.65 7.00 | 3.60 8.26
energy GeV 3.1 1.5 8.1 9.0

n 10—3 1.31 1.41 2.35 2.1
do 1074 8.1 7.1 5.0 6.1
vertical gap (square pipe) b, cm 4.5 2 4.2 4.5
curvature p, M 13.7 4.0 19.1 165.0
mode frequency f, 10'° Hz 8.85 16.14 | 3.66 30.71
mode loss factor X, V/pC 0.22 1.11 | 0.25 0.22
1—wv,/c 1073 1.03 3.1 13.6 0.17
[ 1/ps 8.1 31.9 | 22.6 2.7
Ner 1010 1/cm 45.0 14.3 2.46 490.1
Nbunch 1019 1/cm 3.65 7.0 3.6 0.83
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5 Transition to the continuous
spectrum.

e Interaction with individual CSR makes sense until 2

is small compared to the distance between the modes

Aw.

e The coherent frequency shift increases with k = w,, /c,

e If modes overlap, the loss factor has to be replaced by
the averaged loss factor weighted with the density of
resonances (x,dN/dk),

<Xn(p, m)cfi—]]j> — (2_7‘-)2(%)4/3

a

dn d p’ 5[k — k 2 4 2/3(3_k2>2/3]
p mm1/3 0 p m k% )

Calculations give result o« dP/dw < ReZcsr(w),

Re[Z(w)] = 1.6 Zo(kR)/3.
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e The overlapping takes place at
7T’}/(50

Ner =

(00)/* ()%

Te

e The coherent frequency for a cold beam obtained
before in the case of the continuous spectrum matches

the single mode result at the overlapping.
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6 Nonlinear regime

e The growth rate of the instability is large and hardly

can be observed experimentally.

e The state of the beam is defined by the non-linear
regime of the instability described by the Fokker-Plank

equation.

e Let us change variables

{t,z,0}, V. — {7r,(, P}, A(1),

2
t=——, z= i, o = LP, V = M—A(T)e’q”z.
M dn NWn, NWn,
The F-Pl. equation then is

OF
oP

OF _ 0 o
oOP 8_P[A

8F P%—?+[A()’C+cc] ol

where

P— ISR A _ Twndo /d(dPF(C,P, ) =1.
p p
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e A(7) is defined by

4A(7) = (7)) + 4 A
dr
where
(e7) = / d¢dPF(¢,P,T)e”", A= w”(lu_ &

e Results of the linear approximation take the form

Fo(P)
L

F((,P,T)= + [F1(P)eCv) 4+ cel.

The steady-state distribution without the perturbation

1S

If v >> A, the dispersion equation is simplified to

Vi(v + Ap) = —1,

The growth rate Imv ~ 1 for v >> Ay and

Imy = 1/4/ Ay otherwise.
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6.1 Quasi-linear regime

e The exponential growth of the linear theory saturates
due to the effect of the growing mode on the
distribution of particles.

WT varies much faster than

e Assuming that F; oc Ge™
Fy, we preserve the dispersion equation allowing

adiabatic variation of Fjy with time.

e Using explicit form of F;(P) and the dispersion
equation, equation for Fy is transformed to the
diffusion-like equation (Chin-Yokoya, 1984):

or 8P[A6ff OP + PFy),
where
215 |G|?
2 L 2 2 2UsT
Aeff = T'A“ +

6 Y
(11 — P)2 +v3
where v = v1 + 5.

The energy spread increases in time as
< P? >= 2A2ff7. When < P? >~ v? ~ 1, Landau
damping slows down the growth rate. That happens at

1
T:an, t~1/p.
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6.2 Analogy with FEL. Simulations

e The quasi-linear theory clarifies the mechanism of
transition to saturation but does not tell us what

happens later, at 7 >> 1.
e To study this stage, we replace the F.-Pl. equation by

the set of equations for particles and the coherent mode

dc = P, ar = [A(T)e’* + c.c.] —T'P + k(7),
dr dr
dA(T) — <e_ic> + ZA()A

dr

Here damping and random force x(7) are included,

(kY =0, (k(T)s(T")) =2[A% (1 —1').

The system has a universal form of beam-wave
interaction and exactly equivalent to similar problem of
the FEL theory but with additional damping and

random force.

Parameter p is equivalent to the Pierce parameter p in

the FEL theory.
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The system of equations is very suitable for numeric
simulations. We reproduced results of simulations
(Gluckstern, Krinsky, Okamoto, 1993) at relatively
small time using MATHEMATICA, see Fig. 3.

The amplitude of perturbation oscillates after initial
exponential growth.

500 particles

Figure 2: Amplitude dependence on time in the nonlin-
ear regime of the instability. After 7 ~ 1, exponential
growth of the linear regime changes changes to oscilla-
tions with the average amplitude A ~ 1 and frequency
v~ /2|Al ~ 1.
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6.3 Asymptotic behavior. Resonance
solution

e Unfortunately, contrary to the FEL theory, for a
beam in the storage ring, t >> 1/vyggr, and result

shown in Fig. 3 are not sufficient for this purpose.

e For the FEL, the asymptotic behavior was analyzed
by (G-K-O, 1993).

Analysis does not include damping and quantum
fluctuations and substantially based on the integrals of

motion.

The later are not conserved if are included, for example

AP + (P)] = ~T(P).

e Simulations including damping and fluctuations are

In progress.

We also study some analytic approach to the long-term

behavior of the system.
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e It should be noted, however, that the growing spread
of frequencies in the beam may generate new

resonances.

Instead of the regular behavior in the single mode
regime (low beam densities) the separatrices of
interacting resonances may interact and time
dependence of the mode amplitudes may become

irregular including bursts of the CSR.

e Analysis of transition of the single-mode regime to the
regime of continuous spectrum of the CSR modes gives,
therefore, the estimate for the maximum beam density

where the dynamics is defined by a single CSR mode.

e Parameter 1 gives the estimate for the time to reach
saturation. In the case of the interacting modes, the
same parameter may give the growth time of the burst
which is followed by the relaxation to the initial state
defined by the smallest of 1/vygg or inverse frequency

spread.
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7 Conclusion

e The CSR instability close to the shielding threshold
may be defined by the interaction with a single

synchronous CSR mode.

e Although the impedance in the case of the perfectly
conducting wall is singular, the dispersion equation
does not have any singularity.

e It is shown that in the linear regime for typical
machine parameters, the instability has large growth

rate.

e The growth rate is independent of the energy spread
in the beam but is limited by the Landau damping.

e Analysis of the beam interacting with a single mode

is quite analogous with similar systems such as FEL.

e The analysis of the nonlinear stage is presented which

may have the universal character.
Next Steps to Study:

1. Tracking simulations at large time.
2. Interaction of 2 Modes

3. Non-ideal ring
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